RagDocs MCP Server

A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.

Features

  • Add documentation with metadata
  • Semantic search through documents
  • List and organize documentation
  • Delete documents
  • Support for both Ollama (free) and OpenAI (paid) embeddings
  • Automatic text chunking and embedding generation
  • Vector storage with Qdrant

Prerequisites

  • Node.js 16 or higher
  • One of the following Qdrant setups:
    • Local instance using Docker (free)
    • Qdrant Cloud account with API key (managed service)
  • One of the following for embeddings:
    • Ollama running locally (default, free)
    • OpenAI API key (optional, paid)

Available Tools

1. add_document

Add a document to the RAG system.

Parameters:

  • url (required): Document URL/identifier
  • content (required): Document content
  • metadata (optional): Document metadata
    • title: Document title
    • contentType: Content type (e.g., "text/markdown")

2. search_documents

Search through stored documents using semantic similarity.

Parameters:

  • query (required): Natural language search query
  • options (optional):
    • limit: Maximum number of results (1-20, default: 5)
    • scoreThreshold: Minimum similarity score (0-1, default: 0.7)
    • filters:
      • domain: Filter by domain
      • hasCode: Filter for documents containing code
      • after: Filter for documents after date (ISO format)
      • before: Filter for documents before date (ISO format)

3. list_documents

List all stored documents with pagination and grouping options.

Parameters (all optional):

  • page: Page number (default: 1)
  • pageSize: Number of documents per page (1-100, default: 20)
  • groupByDomain: Group documents by domain (default: false)
  • sortBy: Sort field ("timestamp", "title", or "domain")
  • sortOrder: Sort order ("asc" or "desc")

4. delete_document

Delete a document from the RAG system.

Parameters:

  • url (required): URL of the document to delete

Installation

npm install -g @mcpservers/ragdocs

MCP Server Configuration

{
  "mcpServers": {
    "ragdocs": {
      "command": "node",
      "args": ["@mcpservers/ragdocs"],
      "env": {
        "QDRANT_URL": "http://127.0.0.1:6333",
        "EMBEDDING_PROVIDER": "ollama"
      }
    }
  }
}

Using Qdrant Cloud:

{
  "mcpServers": {
    "ragdocs": {
      "command": "node",
      "args": ["@mcpservers/ragdocs"],
      "env": {
        "QDRANT_URL": "https://your-cluster-url.qdrant.tech",
        "QDRANT_API_KEY": "your-qdrant-api-key",
        "EMBEDDING_PROVIDER": "ollama"
      }
    }
  }
}

Using OpenAI:

{
  "mcpServers": {
    "ragdocs": {
      "command": "node",
      "args": ["@mcpservers/ragdocs"],
      "env": {
        "QDRANT_URL": "http://127.0.0.1:6333",
        "EMBEDDING_PROVIDER": "openai",
        "OPENAI_API_KEY": "your-api-key"
      }
    }
  }
}

Local Qdrant with Docker

docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant

Environment Variables

  • QDRANT_URL: URL of your Qdrant instance
  • QDRANT_API_KEY: API key for Qdrant Cloud (required when using cloud instance)
  • EMBEDDING_PROVIDER: Choice of embedding provider ("ollama" or "openai", default: "ollama")
  • OPENAI_API_KEY: OpenAI API key (required if using OpenAI)
  • EMBEDDING_MODEL: Model to use for embeddings
    • For Ollama: defaults to "nomic-embed-text"
    • For OpenAI: defaults to "text-embedding-3-small"

License

Apache License 2.0

Related in Search - Secure MCP Servers

ServerSummaryActions
SearxNG MCP ServerA Model Context Protocol (MCP) server that provides web search capabilities using SearxNG, allowing...View
Brave SearchAn MCP server implementation that integrates the Brave Search API, providing both web and local sear...View
Weather MCP Server一个提供天气预报和城市信息查询功能的Model Context Protocol服务器。该服务器允许LLMs获取未来24小时的天...View
MCP-SearXNG-Enhanced Web SearchView
MCP Open LibraryView
Data Gouv MCP ServerMCP server for interacting with Datagouv APIs. Specifically:View